CAPNOGRAPHY
In Emergency Care

EDUCATIONAL SERIES

Part 1: Overview
CAPNOGRAPHY
In Emergency Care

• Program Learning Objectives
 – Relate a normal capnogram to the phases of breathing
 – List five clinical applications for capnography
 – Identify the four most common abnormal capnograms
 – Describe how to incorporate capnogram to patient care according to local protocol
CAPNOGRAPHY
In Emergency Care

Program Parts

Part 1: Overview
Part 2: Introduction to Capnography
Part 3: Capnography in the Intubated Patient
Part 4: Capnography in the Non-intubated Patient
CAPNOGRAPHY
In Emergency Care

Part 1: Overview
Why use capnography?

(Corollary: Why should I learn capnography?)
Case Scenario

- 61 year old male
- C/O: “short-of-breath” and “exhausted”
- H/O: > 45 years of smoking 2 packs a day, 3 heart attacks, high blood pressure
- Meds: “too expensive to take every day”
- Exam: HR 92, RR 18, 160/100, 2+ pitting edema, wheezing, crackles

What other information would you want in making your assessment?
Capnography Overview

• A technology that:
 – Provides another measurement in assessing your patient
 – Gives an objective measure of your patient’s ventilatory status
 – Shows a graphic picture of your patient’s ventilatory status
 – Presents an early warning of changes in your patient's cardiopulmonary status
 – Supplies important documentation on your patient
Capnography Overview

- Capnography provides an objective measure of ventilation
- Capnography provides
 - Numeric value of “End-Tidal CO₂”
 - Waveform of respiration
Capnography Overview

• **End Tidal CO₂**—what is it?
 - Breathing is done in waves
 - EtCO₂ is the amount of CO₂ measured at the peak of the wave
 - EtCO₂ is measured at the nose, mouth, or hub of the ET tube
Capnography Overview

• “Capnos” is Greek for smoke
 – From the “fire of life”—metabolism
 – Metabolism produces carbon dioxide as a waste product
Capnography Overview

- Carbon Dioxide (CO₂)
 - Produced by all living cells
 - Diffused into the bloodstream
 - Transported to the lungs
 - Perfused into the alveoli
 - Exhaled through the airway
History of Capnography in EMS

- Initially used for monitoring anesthetized patients in the OR
- New technology now available for EMS in both intubated and non-intubated patients
History of Capnography in EMS

- Used by anesthesiologists since the 1970s
- Standard of care in the OR since 1991
- New JCAHO standard now expanding utilization

History of Capnography in EMS

- JCAHO January 2001 standard on procedural sedation
 - In any hospital or clinic setting
 - Monitoring vital signs, continuous monitoring of oxygenation and ventilation

Capnography provides the only continuous visual monitoring of ventilation

Source: Joint Commission Perspectives, Special Report. July/August 2000
History of Capnography in EMS

- Pulse oximetry preceded capnography
- Pulse oximetry measures oxygenation
- Capnography measures ventilation
 - New technologies now allow use in EMS
History of Capnography in EMS

Colorimetric

Capnometry

Capnography
History of Capnography in EMS

Colorimetric:

- Specially treated litmus paper
 - Color changes indicate qualitative amount of CO\textsubscript{2} detected
- For intubated patients only
- Disposable detector fits on ET tube hub
History of Capnography in EMS

Colorimetric:

- Single use
- Easily impaired by moisture or secretions
- False negatives during cardiac arrest
 - Presence
 - Strength/amount
History of Capnography in EMS

Colorimetric:

Colorimetric CO₂ Indicator

Breathing Circuit

ET Tube
History of Capnography in EMS

Capnometry:

- A numerical value of the EtCO₂
- For both non-intubated and intubated patients
- Continuous monitoring
History of Capnography in EMS

Capnometry:

• No waveform of the EtCO₂ in the airway
• Equates to monitoring heart rate in cardiac patient
 – Present
 – Amount or range
 – Changes over time
History of Capnography in EMS

Capnometer:

- EtCO₂: 32
- RR/MIN: 11
History of Capnography in EMS

Capnometry:

• Numeric reading: HR 100
• Waveform:
History of Capnography in EMS

Capnometry:

- Numeric reading: HR 100
- Waveform:
History of Capnography in EMS

Capnography:

• A numerical value of the EtCO₂ AND
• A waveform of the concentration of CO₂ present in the airway
History of Capnography in EMS

Capnography:

• For both non-intubated and intubated patients
• Continuous breath-to-breath monitoring
• Equates to ECG monitoring in cardiac patient
History of Capnography in EMS

Capnography:

HR
SpO₂
EtCO₂
ECG Waveform
Oximetry Waveform
Capnography Waveform
History of Capnography in EMS

- Capnography systems
 - Collector of the air sample
 - Analyzer detects and measures CO₂
 - Display shows waveform and number
History of Capnography in EMS

Capnography Technologies:

Conventional high-flow sidestream

1980’s

Mainstream

Early 1990’s

New low-flow sidestream technology
History of Capnography in EMS

- Conventional high-flow sidestream capnography
 - For both intubated and non-intubated patient
 - Analyzer located inside the device for protection
- No added weight on patient’s airway
History of Capnography in EMS

• Conventional high-flow sidestream capnography
 – Requires 150-200ml of air to measure a CO₂ level
 • Air aspirating system
 • Requires frequent calibration
 • Frequent occlusion of tubing by moisture and secretions
• Inaccurate in neonates, infants, and young children
History of Capnography in EMS

Conventional high-flow sidestream capnography system
History of Capnography

- Mainstream Capnography
 - Developed for intubated patient
 - Analyzer on the hub of ET tube
 - Not disposable
 - Weight on the ET tube
 - Adaptors attach to analyzer for non-intubated patients
History of Capnography

- New low-flow sidestream capnography
 - Newer technology requires 50ml of air for sampling
 - Occlusions uncommon
 - Accurate in all age groups
 - neonates to large adults
History of Capnography

• New low-flow sidestream capnography
 – For intubated and non-intubated patients
 – No calibration required between patients
 – Disposable tubing and cannulas
 – New in-line filters exclude contaminants
 – Durable for EMS environment
History of Capnography

• New low-flow sidestream technology
Using Capnography

• Immediate information via breath-to-breath monitoring

• Information on the ABCs
 – Airway
 – Breathing
 – Circulation

• Documentation
Using Capnography

- **Airway**
 - Verification of ET tube placement
 - Continuous monitoring of ET tube position

- **Circulation**
 - Check effectiveness of cardiac compressions
 - First indicator of ROSC
 - Monitor low perfusion states
Using Capnography

• Breathing
 – Hyperventilation
 – Hypoventilation
 – Asthma
 – COPD
Using Capnography

- Documentation
 - Waveforms
 - Initial assessment
 - Changes with treatment
 - EtCO₂ values
 - Trends over time
Part 1: Capnography Overview

Summary

- The only visual objective measure of ventilation
- Provides breath-to-breath readings
- For intubated and non-intubated patients
- Information and documentation of patient’s ABCs
- New technology for use in EMS
Part 1: Capnography Overview

Okay, let’s get started.