EKG Basics

Ben Taylor, PhD, PA-C
P waves only in V3-6

ST elevation in R-sided leads

ST segment elevation greater in lead III than II

Inferior wall MI

P waves only in V3-6

Biphasic T waves

Right Ventricular MI
Right Ventricular MI Criteria

• Inferior wall MI
• ST segment elevation greater in lead III than II
• ST segment elevation in V₁ (possibly extending to V₆)
• ST depression in V₂ (unless elevation extends, as in #3 above)
• ST depression in V₂ cannot be > half the ST elevation in aVF
• More than 1 mm of ST elevation in the right-sided leads (V₄R to V₆R)
Simple Cellular Electrophysiology

- Cardiac cells, in their resting state, are electrically polarized (negatively charged)
 - Maintained by membrane pumps to ensure appropriate ion distribution (K^+, Na^+, Cl^-, Ca^+) to keep the inside cell electronegative.
- Cells lose their internal “-” during deplolarization
- Cells restore their resting polarity during repolarization
Electricity and the Heart

- Pacemaker cells
- Electrical conducting cells
- Myocardial cells
- Depolarization
- Repolarization
Pacemaker Cells

- Electrical power source of the heart
- Dominant cells located in “Sinoatrial” (SA) node area of heart
- Able to depolarize over and over
- Fires at rate of 60-100 times per minute
 - Depends on activity of autonomic nervous system
- Each depolarization initiates one complete cardiac cycle (contraction and relaxation)
Electrical Conducting Cells

- Carry current throughout the heart similar to that of an electrical wiring.
Myocardial Cells

- Constitute major part of heart muscle
- Responsible for repeatedly contracting/relaxing forcing blood to rest of body.
- After depolarization, these cells contract 2^0 to Ca$^{++}$ release
Depolarization

- Considered an advancing wave of + charges within heart myocytes. In turn causes..
- Progressive contraction of myocardium
SA Node

• Heart’s dominant pacemaker
• Ability of SA node to generate pacemaking stimuli is known as automaticity
• Depolarization of atria detected by electrodes
• Noted as “P” wave on EKG
 – should not be more than 1 box wide or 1 box tall
• Understood as “atrial depolarization”
Variations of the P-wave

- Tall, symmetrical, peaked waves seen in increased right atrial pressure (P pulmonale)
- Notched/wide waves seen increased left atrial pressure (P mitrale)
- Biphasic P waves can occur in both R & L atrial dilation. Typically appear in leads V_1 & V_2
Atrial Contraction

- Depolarization slows within AV node…
- Brief pause occurs
 - Allows blood from atria to pass through AV valves into ventricles
PR Interval

- Measures the time from the start of atrial depolarization to the start of ventricular depolarization.
- Normal interval lasts from 0.12 – 0.2 seconds
Ventricular Depolarization

- Depolarization starts slowly but picks up speed in the Bundle of His…
- Down the bundle branches…
- Depolarization quickly distributed to the myocytes of the ventricles via terminal filaments of Purkinje fibers
- Produces a “QRS” complex on EKG
 - Normal QRS complex is 0.06 – 0.1 seconds
Ventricular Contraction
QRS Complex

- **Q-wave**: first **NEGATIVE** (downward) deflection of the QRS complex.
 - Sometimes absent
- **R wave**: first **POSITIVE** (UPWARD) wave of the QRS complex
- **S wave**: any downward wave preceded by an upward wave.
Variations of the QRS Complex

Examples include:
- QRS pattern
- RSR' pattern
- QR pattern
- RS pattern
- QS pattern
Repolarization

- Occurs after contraction of the myocytes.
- Myocyte interior regain their resting negative charge.
- Recovery phase.
Let's take a Break!!!
Ventricular Repolarization

- Following QRS complex, segment of horizontal baseline known as the ST Segment
 - Represents initial phase of ventricular repolarization.
 - Usually lasts 0.08 - 0.12 seconds
- T wave: represents final “rapid” phase of repolarization
 - Accomplished by K⁺ ions leaving myocytes
QT Interval

- Represents the duration of ventricular systole and is measured from the beginning of the QRS until the end of the T-wave.
- Normal QT interval is affected by many factors.
Heart Rate Determined QT

- 115 - 84 bpm: QT 0.30 to 0.37 seconds
- 83 - 72 bpm: QT 0.32 to 0.40 seconds
- 71 - 63 bpm: QT 0.34 to 0.42 seconds
- 62 - 56 bpm: QT 0.36 to 0.43 seconds
- 55 - 45 bpm: QT 0.39 to 0.46 second
Prolonged QT Etiologies

- Familial long QT Syndrome
- Congestive Heart Failure
- Myocardial Infarction
- Hypocalcemia
- Hypomagnesemia
- Type I Antiarrhythmic drugs
- Rheumatic Fever
- Myocarditis
- Congenital Heart Disease

Indicates prolonged ventricular repolarization which means a longer relative refractory period

Watching for this entity is important b/c it can lead to life threatening dysrhythmias such as Torsades de Pointes
Shortened QT Etiologies

- Digoxin (Digitalis)
- Hypercalcemia
- Hyperkalemia
- Phenothiazines
Plateau & Rapid Phases of Repolarization
Complete Cardiac Cycle
U Wave

- The U wave is a medical curiosity.
- It is not clear what relationship it has with cardiac activity but it is thought to represent the repolarization of the His-Purkinje complex.
- Becomes taller in hypokalemia and pts taking Quinidine
- Can flip in CAD.
- Usually follows the direction of the T wave and is best seen in lead V3.
- Due to the weakness of the signal, the U-wave is often not seen on the ECG.
U-Wave

![Diagram showing the U-wave in an electrocardiogram (ECG) with labeled segments: P-wave, QRS complex, T-wave, and U-wave. The diagram includes measurements such as P-R interval and Q-T interval.]
J-Point

• The point at which the QRS meets the ST segment
• The J point is at the end of Ventricular depolarization
• An essential landmark for measuring QRS duration
J-Point
Recording the EKG

- Recorded on ruled (graph) paper
- Smallest divisions are 1 millimeter (mm) long and 1 mm high
- Time
 - Horizontal axis represents time
 - Each small block is .04 seconds
 - Every 5 blocks (between heavy lines) is .2 seconds
EKG Paper
Timing

- .2 sec.
- .04 sec.
- .16 sec.
- .08 sec.
Isoelectric Line
Each ECG lead provides a different view of the heart
Limb and Chest Leads
Limb Leads

[Diagram of a human body with limbs labeled Right Arm electrode, Left Arm electrode, and Left Leg electrode]
Chest Leads
Rhythm Counting

Using the triplets:
Name the lines following the “Start” line.
Finer Rhythm Counting
Finer Rhythm Counting

<table>
<thead>
<tr>
<th>Start point</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>214</td>
</tr>
<tr>
<td>188</td>
</tr>
<tr>
<td>167</td>
</tr>
</tbody>
</table>